Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes.
نویسندگان
چکیده
A study to quantify the effect of rhamnolipid biosurfactant structure on the degradation of alkanes by a variety of Pseudomonas isolates was conducted. Two dirhamnolipids were studied, a methyl ester form (dR-Me) and an acid form (dR-A). These rhamnolipids have different properties with respect to interfacial tension, solubility, and charge. For example, the interfacial tension between hexadecane and water was decreased to <0.1 dyne/cm by the dR-Me but was only decreased to 5 dyne/cm by the dR-A. Solubilization and biodegradation of two alkanes in different physical states, liquid and solid, were determined at dirhamnolipid concentrations ranging from 0.01 to 0.1 mM (7 to 70 mg/liter). The dR-Me markedly enhanced hexadecane (liquid) and octadecane (solid) degradation by seven different Pseudomonas strains. For an eighth strain tested, which exhibited extremely high cell surface hydrophobicity, hexadecane degradation was enhanced but octadecane degradation was inhibited. The dR-A also enhanced hexadecane degradation by all degraders but did so more modestly than the dR-Me. For octadecane, the dR-A only enhanced degradation by strains with low cell surface hydrophobicity.
منابع مشابه
Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.
The effect of the biosurfactant rhamnolipid on phenanthrene biodegradation and cell growth of phenanthrene degraders was investigated. To compare the effect of rhamnolipid addition, two bacterial strains, 3Y and 4-3, which were isolated from a diesel-contaminated site in Korea, were selected. Without the biosurfactant, large amounts of phenanthrene were degraded with both strains at neutral pH,...
متن کاملRhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions.
The objective of this research was to evaluate the effect of low concentrations of a rhamnolipid biosurfactant on the in situ biodegradation of hydrocarbon entrapped in a porous matrix. Experiments were performed with sand-packed columns under saturated flow conditions with hexadecane as a model hydrocarbon. Application of biosurfactant concentrations greater than the CMC (the concentration at ...
متن کاملAggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.
Solubilization of n-decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (M...
متن کاملA rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation.
A model cocontaminated system was developed to determine whether a metal-complexing biosurfactant, rhamnolipid, could reduce metal toxicity to allow enhanced organic biodegradation by a Burkholderia sp. isolated from soil. Rhamnolipid eliminated cadmium toxicity when added at a 10-fold greater concentration than cadmium (890 microM), reduced toxicity when added at an equimolar concentration (89...
متن کاملBiodegradation of Polycyclic Aromatic Hydrocarbons (PAH) from crude oil in sandy-beach microcosms
Though the lower n-alkanes are considered the most degradable components of crude oil, our experiments with microcosms simulating oiled beaches showed substantial depletion of fluorene, phenanthrene, dibenzothiophene, and other PAH in control treatments consisting of raw seawater cycled through the microcosms over a 30-day period. PAH was not detectable in pooled test system effluents. To resol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 61 6 شماره
صفحات -
تاریخ انتشار 1995